A Basic Neural Net

Neural nets are often compared to neurons in the brain. Even if this is the root of how the
concept arose, | don't feel it to be a good example. No one really understands what neurons do.

Let's take a more simple example:

Example 1: A Castle Preparing For Seige

Alice (A) wants to let the king know about an oncoming war, she stands on the east front of the
castle.
Her colleague, Bob (B), stands on the northern front.

At dawn they pass on a message to the messenger (M). The messenger is new to the castle and
has no idea who to trust.

The messenger takes Alice's message and hears her say 'the war is near!’, the messenger quickly
goes to Bob who passes on his message and says 'there is nothing to worry about yet'.

The messenger, a little confused, relays the messages, the importance of each message and his
personal bias as to what is happening, to the king.

Note, the messenger took more importance of Alice's message as it seemed more urgent.

The King, being rather simple, takes all this information, plugs it into his internal importance
calculator and decides there is indeed a war!

The King was wrong... all the troops went home, tired from their rushing to the gates.

Alice is known to be scared and to exaggerate things a little, the messenger, now getting to
know the people he works for, will take less importance to Alice's messages in the future. On
the other hand, Bob was telling the truth and is rewarded with more importance. His own
personal bias of the situation will also change slightly as he gets better at relaying the correct
overall message to the king.

Learning:

After he has made the prediction the king needed to see whether he was correct, in order to
learn for the future.

note, ERROR = difference between PREDICTION and REALITY
If the king was correct, all importances and biases must be reinforced/ hardened.

However if the king was wrong, the messenger must find those he spoke to and change their
importances in proportion to how culpable they were to the prediction, he must also change his
own personal bias. All in order to make sure it doesn't happen again!

We now want to start translating the above story into Machine
Learning Lingo:

1. This learning process is known as Backpropagation (as the messenger propagates his re-
evaluations backwards to where he started) and will be covered thoroughly further on.

2. The Kings Calculator is known as the Activation Function which is the neurons output and
will be covered next.

To put the previous in algebraic terms:

A = Alice's message
B = Bob's message

Wy = importance of Alice's message

Wpg = importance of Bob's message

M = personal bias of the Messenger

X = all information
@() = the Kings calculator

A summary of our story:
Messenger gets Alice's message and Alice's importance and multiplies them together

He then repeats this for Bob

He then adds his own personal bias, now he has all the information

He passes it onto the king who puts it in his calculator and outputs a prediction.

1. Total_A = A * Wp, (multiply Alice's message by its importance)

2. Total_B = B * Wg, (multiply Bob's message by its importance)

3. X = Total_A + Total_B + M, (add them together alongside the bias of the messenger)

4. PREDICTION = ¢(X), (plug X into the calculator which will spit out whether there is a war or
not)

L W) gag
memage g ‘mensge
@ x We ’—'—P@ ﬁ\lg/}%

(A (B e
(s R) +(Pxg) + x

: thece «7
all in, . @

—8—X

/K ?7]: T “b'f

Let's look at the neural network from the story:

It turns out that Alice and Bob are equivalent to the Inputs of a neural net, the Messenger is
equivalent to the Neuron and the King's Calculator is equivalent to the Neuron's Activation

Function

acte. X #£ X

x'\-,‘ .Qﬁ:w :
@0

Ko

% /sz

X £ X.L-J. y X W2 tl? A//W‘W,M;In
(‘M X,)b 7"
%;] 5“?"‘"

A re-translation of the above into common mathematical terms
you will see in the future

current common
A = Alice's message X1 = input 1
B = Bob's message Xy = input 2

W, = importance of Alice w; = weight 1

Wpg = importance of Bob ws = weight 2

M = Messengers bias b = bias

X = all information X = all information

¢() = the Kings calculator ¢() = the Activation Function

OUTPUT ¢(X1) = ¢1 = ouput of neuron 1
PREDICTION U = Yprea = prediction = output of final neuron
REALITY y = reality

Summation and Index Notation)"

For those that are not used to seeing this please be patient as it will be used a lot throughout

lets take an example where i = 1 = starting index and n = 3 = final index:
n=3
>im1 (@)

starting at i=1 we have z1, then we add 1 to i, giving us 5 and add this to what we had before,

1 + x2. We then repeat, add one to i and add to what we had before, 21 + 22 + 3. We cannot
repeat any further as we have reached our final index, i = n = 3, therefore we have arrived at our
answer.

Another example, if (n = 5and i =0) => 2?2205(.1:1-) =2y + o + Xy + T3+ Ty + T

note, the small number (subscript/ index) after x just denotes its position and has no importance to
the value of x, like an id number, Alice could be the 1007th watcher $(x{1001})orthe — 20th
(x_{-20}). Allthatmattersisthatwecanidenti fyher(x_i)andherimportance(wi)$ from the
others. However, this would make writing the sum equation and many other things unnecessarily
difficult so we prefer ordering inputs consecutively

Equation summary:

With the tools above, we can re-write everything into a single equation:
In our case, as we have just Alice and Bob as inputs,i=1Tand n =2

g= ¢((Z?::12 z;w;) + b) = d(z1wr + Tows + b) = P(X)

However, to make things easier for the computer we must simplify even further and move the
bias into the x;w; part of the equation.

We can create a weight at index 0 and make it = 1 (wp = 1)
We can also create an input at index 1 and make it = b (zg = b)

so that:
g = ¢((Z?::12 zw;) +b) = ¢(Z?:02 z;w;) , where (wy = 1 & x5 = b)

as zowp = b

x,eo, Worl

net

ZJC:CJ: - Ky + KL+ Kz
(=0

_ (bed) 4 (AxUals (57w)

Neuron Output Equation:

for any neuron, in any layer, we take the number of inputs, n and work out its output with:

g =o¢(> " jziw;) , wherewy =1&z9 = b

The reason we use indexes and obsess about shortening is that it makes writing and processing
these equations much easier when we have more inputs. For example in an coloured image of size
1980x1080 we have (1080 * 1980) = 2,092,800 pixels, now taking into account colour. Each pixel
takes a red, green and blue input, therefore we have (2,092,800 x 3) = 6,278,400 different inputs.

Multi-Layered Neural Networks

We have been discussing a single layered neural net, known as a "perceptron". It contains an
input layer + a neuron output layer

NN's (neural networks) with more than 1 layer are known as "deep” neural networks
If we were to expand the above and make it "deep", we would do the following:

Say there are 10 watchers (n = 10) and 5 messengers (m = 5) and one output important
messenger which takes the 5 messengers before it as inputs.

To quickly rewrite the story, for each of the 5 messengers, they go to each individual input, get
the message written to all messengers and then multiply it to their specific importance of that
watcher, they then add their personal bias and go to the king. This time, the King doesn't trust
them enough to make a prediction but nonetheless uses his calculator to hand them back an

importance value.

After this first run, we have 5 messengers with 5 different importance values from the King,
these, for all intents and purposes will act as watchers or inputs for the final, important,
messenger.

The important messenger then goes to each messenger, gets the message (in this case the
importance value each individual messenger got from the king) and multiply it with the
importance associated to each specific messenger. To top it all off he adds his personal bias and
hands it to the king. The King, as before, plugs all this information into his calculator and as he
trusts his important messenger, declares a prediction for his kingdom.

Notice, here we have 2 layers of messengers (neurons) and so can call it a "deep" neural network.

Equation Time:

The difference, is that we need another index system for the second layer (the 5 messengers). It
is common to use j (as i is already taken).

The next letter (if we had a 3rd layer) would be k, then |, then m. Don't ask me why.

It is also important to understand the importance of indexing, if we look at importance (/weight)

we will get 2 indexes, w;;, here this is the importance messenger j gives input i

i
In the case of w, this would mean the importance messenger k (in layer 2) gives messenger j

(in layer 1)

In this way, we can see it as the importance j gives k, hence wj;, or the importance i gives j w;;

we will need to use the Neuron Output Equation above

output of neuron 1 (j = 1) in layer 1:

d1(X1) = ¢(Z?:010($1'w1'1)), (where g = by & wg1 = 1)

similarly the output of neuron 2 (j = 2) in layer 1:

$a(X5) = ¢(Z?::010($iw¢2)): (where o = by & wgy = 1)

etc forj <=5

We can then take all these 5 outputs 4, §,, 3, U, U5 as inputs for the next layer

output of the last and only neuron 1 (no index required as he is by himself) in layer 2:

g = ¢(Z;~l:05($jwj)), (where zg = b & wo = 1)

note: neuron 1 in layer 1 is NOT equal to neuron 1 in layer 2. The reason we call them neuron 1 is
that they are the Tst neuron in their layer

we could rewrite the whole network in a single equation:
~ m=>5 n=10
Yy = ¢(Zj:0 (P(Xico (wiwij)wj)))

~10 : :
as #(X_i—, (ziws;)) = n; the neuron output equation for each messenger j

and §j = ng(Z;.n:(f(njwj)) = ¢(Z§n:205(QS(Z?::OIO((Ei'U)i]‘)’LUj))) = the neuron output equation
for the final important messenger.

2-Layered and then 3-Layered Neural Network Output Equation

as follows, a general equation to find the output of a 2 layer NN, with n inputs and m neurons in
the second layer

g = (i o(b5ws) = ¢ 0 (S350 (ziwij)w;)))

for a 3-Layered NN we would have the following

§ = (o (drwr)) = d(X20 (X2 0 (P5win))))
= d(X o (P20 (B (wiwig) Jwjn Jwr,)

ouptuts of layer 1, where j denotes which neuron in layer 1 we are talking about and 7 is the
number of inputs:

$; = (2o (ziwis)

outputs of layer 2, where k denotes which neuron in layer 2 we are talking about and m; is the
number of neurons in layer 1:

¢ = (T 0(#(X))wy) , where X; = 377 (zwy;)

outputs of layer 3, where | denotes which neuron in layer 3 we are talking about and my is the
number of neurons in layer 2:

m ml
&1 = (X1 0 (d(Xi)wi) , where X = 3 (6(X;)wji)
if layer 3 is our final output neuron, g = ¢,

We can now see how we can fit this all in one equation, and hopefully you can see the trend that
is going on if we were to add more layers:

g = o325 (drwym))

here is a basic multilayered neural net to help you understand the notation used above:

Ladu

Nzt MIS O &J;
5 ER D
tupuT | caver 1 LweRz CEL
ot . -‘.'P’”" 3 Jnper 1k . J:.‘ l.
dek in) ;nde
A= Z M¢=z MLF—% m;:f

If you haven't understood the idea of summation and indexing, please try these questions to get
your head around it. It is a lot to digest at first glance but once you get the hand of it, it will
seem much more simple.

http://www.columbia.edu/itc/sipa/math/summation.html

https://courses.lumenlearning.com/ivytech-collegealgebra/chapter/using-summation-notation/

